

Welcome to eSim and Arduino on Cloud’s documentation!

The project aims to provide a facility for a user to design different types of electronic circuits and arduino projects and simulate them by providing simulation parameters on the web. The detailed features will be updated soon.

Contents:

	1. Overview
	1.1. eSim on Cloud

	1.2. Arduino on Cloud

	2. Architecture and Installation
	2.1. Installation and Usage

	2.2. Environment Variables

	3. Introduction to eSim on Cloud
	3.1. eSim Development Flow

	3.2. Features

	3.3. eSim Gallery Examples

	3.4. Screenshots

	4. Introduction to Arduino on Cloud
	4.1. Arduino Development Flow

	4.2. Features

	4.3. Screenshots

	5. Developer docs
	5.1. APIs

	5.2. DB Switching Instructions

	6. Contributing
	6.1. Contributing

	6.2. Contributing Guidelines

	6.3. Creating a new issue

	6.4. Pull request

	7. Credits
	7.1. eSim on the Cloud

	7.2. Arduino on the Cloud

	8. Arduino Frontend Guide
	8.1. Serve on a Local Machine

	9. Configuring Production Environment

	10. Configuring Development Environment
	Creating an Component for Simulator

Indices and tables

	Index

	Search Page

1. Overview

1.1. eSim on Cloud

This system allows the users to draw analog and digital circuits and simulate them. The users have a facility to drag and drop components from the left pane onto the schematic grid on the right pane. The components on the grid are connected using wires. The circuit can then be simulated using the different simulation parameters (DC Solver, DC Sweep, Transient analysis, and AC analysis). The basic ERC check enables the users to find out errors if any. The size of the schematic grid can be changed from A1 to A5 paper sizes along with portrait and landscape modes. The users can also print the circuit or save it in pdf format for documentation purposes.

1.2. Arduino on Cloud

This system allows the users to drag and drop Arduino components from the left pane onto the working space on the right. The pins of the Arduino board can be connected to various input/output devices like LED, motor, push button, etc using wires. There is also a facility to change the color of wires, LEDs, and such components, so as to differentiate the easily. The users can then proceed to write their code in the code window which is then simulated. There is an option for the users to print or save it in pdf format for documentation purposes. The basic ERC check enables the users to find out errors if any.

Note

This docs is created using Read the docs and we will be glad to receive pull requests for updating the same. Please go through the Contribute section to know more.

2. Architecture and Installation

The production environment consist of the following docker containers:

	Container Name

	Description

	nginx

	Used as a reverse proxy to route requests to appropriate endpoints and loadbalancing

	celery

	Used as a reverse proxy to route requests to appropriate endpoints and loadbalancing

	redis

	Used as a cache and a task queue for Celery

	mongodb

	Container running MongoDB Database

	db

	Container running MYSQL Database

	django

	Container running the main Django Backend serving all APIs

	arduino-frontend

	Container running node 10 helping build Angular app for Arduino Simulation Webapp

	eda-frontend

	Container running node 10 helping build React app for EDA CircuitSimulation Webapp

Note

These containers depend on .env.prod file, configuration details can be reffered from Environment Variables.

[image: ../_images/docker.png]

	2.1. Installation and Usage

	2.2. Environment Variables

2.1. Installation and Usage

It is essential that docker [https://docker.com/] and docker-compose [https://github.com/docker/compose/releases] are installed on a system before following the steps.

2.1.1. Production Environment

	git clone git@github.com:frg-fossee/eSim-Cloud.git && cd eSim-Cloud

	cp .env .env.prod

	docker-compose -f docker-compose.prod.yml –env-file .env.prod up –scale django=1 –scale celery=3 -d

Note

Please change the default passwords in the .env.prod file to secure your instance against attackers.

2.1.2. Development Environment

	git clone git@github.com:frg-fossee/eSim-Cloud.git && cd eSim-Cloud

	git checkout develop

	Configure docker with github packages for pulling pre built images

	echo $GITHUB_TOKEN | docker login docker.pkg.github.com –username [github_username] –password-stdin

	/bin/bash first_run.dev.sh

2.1.2.1. For running only the backend containers

	docker-compose -f docker-compose.dev.yml up django

2.1.2.2. For running only the eda-frontend container with backend

	docker-compose -f docker-compose.dev.yml up eda-frontend

2.1.2.3. For running only the arduino-frontend container with backend

	docker-compose -f docker-compose.dev.yml up arduino-frontend

2.1.3. Useful Commands

	docker exec -it <container ID> <command>

	eg. docker exec -it b7e7acf2283e /bin/sh

	sh migrations.sh inside a docker container to apply db migrations manually

	To seed libraries - python manage.py seed_libs –location kicad-symbols/ inside container

	To remove seeded libraries - python manage.py seed_libs –clear inside container

2.2. Environment Variables

	Variable

	Description

	Default

	PYTHONUNBUFFERED

	allows for log messages to be immediately dumped witout buffering

	True

	SQL_ENGINE

	SQL Engine used by Django

	django.db.backends.mysql

	SQL_HOST

	Hostname for database server

	db

	SQL_PORT

	Port for database server

	3306

	DJANGO_DEBUG

	Debug mode setting for Django

	True

	MYSQL_ROOT_PASSWORD

	Root password for MYSQL

	password

	MYSQL_DATABASE

	Default database name for MYSQL

	esimcloud_db

	MYSQL_USER

	Username for MYSQL Server

	user

	MYSQL_PASSWORD

	password for MYSQL Server

	password

	MONGO_INITDB_ROOT_USERNAME

	Username for MongoDB Initial Database

	user

	MONGO_INITDB_ROOT_PASSWORD

	Password for MongoDB Initial Database

	password

	MONGO_INITDB_DATABASE

	MongoDB Initial Database name

	esimcloud_db

	TAG_MYSQL

	MYSQL Docker Image Tag to pull (Version)

	8.0

	TAG_REDIS

	Redis Docker Image Tag to pull (Version)

	alpine3.11

	TAG_MONGO

	Mongodb Docker Image Tag to pull (Version)

	4.2.6

	GUNICORN_WORKERS

	Number of Gunicorn workers to spawn per container

	5

	CELERY_WORKERS

	Number of Celery workers to spawn per container

	5

	EDA_PUBLIC_URL

	public url used to build react frontend files

	http://localhost/eda

	ARDUINO_BASE_HREF

	public path used to build angular frontend files

	/arduino/

Note

Please change the default passwords in the .env.prod file to secure your instance against attackers.

3. Introduction to eSim on Cloud

	3.1. eSim Development Flow

	3.2. Features

	3.3. eSim Gallery Examples

	3.4. Screenshots

3.1. eSim Development Flow

[image: ../_images/flow_lib_to_svg.png]
[image: ../_images/flow_schematic_to_simulation.png]

3.1.1. Reading Component Symbol Library files and Rendering in the Browser

The Kicad symbol libraries ‘.lib’ and ‘.dcm’ (https://github.com/KiCad/kicad-symbols) are parsed to generate SVG files that are compatible with the mxgraph (javascript graph library). These components are generated only once and are cached. These generated SVG files are read and rendered in the component list (left pane) using mxgraph.

3.1.2. Generating XML files

The components from the left pane are dropped onto the schematic grid. By default, the size of the grid is A4, which can be changed from A5 to A1. The components connected by wires are converted to XML format using mxgraph, whenever the circuit is saved by the user. This XML is used to save and re-open the saved circuits. This XML is also used to auto annotate the circuit, and in performing ERC checks as well.

3.1.3. Generating Netlist

Using the mxgraph object, a netlist is generated (compatible with ngspice simulator) when the user clicks on the ‘Simulation’ or ‘generate netlist’ button. The simulation parameters are supplied by the user based on the simulation type chosen by the user. The following are the different parts of netlist generation:

	Title: title of the schematic diagram

RC Circuit

	Model: All spice models given by users will be listed here. These are extra parameters which are not delivered with ngspice. They are device manufacturer specific and may be obtained from their web sites or from other sites

.model BC546B npn (IS=7.59E-15 VAF=73.4)

	Netlist: Text description of circuit. It has all components listed with connecting nodes, parameters and spice model (if specified by the user). This is generated with the help of mxgraph object. An example is shown below

r1 in out 1k
c1 out gnd 10u
v1 in gnd pwl(0m 0 0.5m 5 50m 5 50.5m 0 100m 0)
Q1 intc intb 0 BC546B

	Control Line: It has all simulation parameters. It is generated depending on the type of simulation and the parameters specified by user

.tran 10e-03 100e-03 0e-03 // Transient analysis
.ac dec 10 10 1Meg // AC Analysis

	Control Block: All Interactive commands to actually produce output for given schematic.

.control
run
print all > data.txt
.endc
.end

3.1.4. Simulation

	When the ‘Simulate’ button is clicked, the ERC checks are performed. If all goes well then the netlist is generated. If not, the error(s) are shown to the user.

	This netlist is sent to the backend services. Using the distributed queueing mechanism of Celery, asynchronous requests (netlist files) are kept in queue and passed onto Ngspice.

	Ngspice then outputs a text file with all the coordinates required to plot the graph.

	This textfile is then parsed using an inhouse parser to convert the data of the text file into an organised data structures (JSON). The simulation graph is then plotted and rendered based on the data returned by this JSON using chartjs.

3.1.5. JSON format returned by parser

As mentioned above, the output produced by ngspice is converted to JSON. The format is given below:

{
 total_number_of_tables: <int>,
 isGraph: <bool>,
 data:[
 {
 labels : [], x : [], y : [[] , []] ,
 }
]
}

	total-number-of-tables: The number of tables present.

	isGraph: True, if the data is a graph, False if the data is just a table.

	data: An array which contains one or more objects depending on the input provided to the parser.

	labels: An array which contains all the labels that have to be present on the graph. Eg. [“time”, “vin”, “vout”].

	x: An array containing all the x co-ordinates for a set of graph. E.g. Time on x-axis. This is a linear array as the x coordinates will be the same for different set of y coordinates.

	y: A 2D array containing y co-ordinates for different graphs.

3.2. Features

The schematic editor is divided into 3 panes. The left pane consists of the Component List and a facility to search components. The middle pane consists of the grid on which the components will be dropped and the circuit will be designed. The right pane consists of the grid properties, description of the circuit, and components position. More details are given below.

3.2.1. Component categories

The kicad components are categorized as follows, where each component has Name, Description, Keywords, and Datasheet.

	Analog

	Device

	Triac_Thyristor

	Transistor_IGBT

	Diode

	Transistor_FET

	pspice

	Oscillator

	eSim_Sources

	eSim_Hybrid

	Motor

	LED

	Transistor_BJT

	power

	4xxx

3.2.2. Searching Component

Rather than going through categories and locating the component symbol, one can also search a component by typing in the textbox given, using the filters like Name, Keyword, Description, Component Library, and Prefix.

3.2.3. Grid size and Orientation

The size of the grid can be changed from A1 to A5 and offers Portrait and Landscape mode

3.2.4. Components Position

Using the this box, one can access and view the circuit which do not fit onto the specified grid size. Its like accessing another page. This situation arises when one has a large circuit and changes the grid from a larger size to a smaller one.

3.2.5. Schematic Description

A text area in which one can write the description about the circuit.

3.2.6. Basic Editor Operations

The following basic editor functions are supported:

	Undo

	Redo

	Delete

	Zoom in

	Zoom out

	Default size

	Rotate

	Print

	Clear All: Clear the schematic drawn

3.2.7. Gallery

Sample circuits are available in the gallery for anyone to refer and use. These circuits can be opened, saved, and simulated.

3.2.8. Saving and Re-Opening

The circuits are saved only of an authenticated user and are viewed on the user dashboard. The same can be reopened as well for further editing.

3.2.9. Dashboard

A place where the authenticated user can view the different circuits designed by him/her. Then user can open the saved circuit into the editor by clicking on Launch in Editor.

3.2.10. Export

	Image: The circuit can be exported as jpeg, png, and svg. This is useful for documenting and printing.

	JSON: The circuit can be exported as JSON so as to open it again using the Upload feature.

3.2.11. Open Schematic

The schematic can be opened using the following methods:

	Uploading file: One needs to upload the file in JSON format i.e. which was exported using this tool.

	Local: The circuits saved by the authenticated user.

	Gallery: The sample circuits available in the gallery for anyone to refer.

3.2.12. ERC Check

Basic ERC check is done for simulating a circuit. For example, if the wires are connected or not.

3.2.13. Generate Netlist

Based on the circuit a netlist is generated. The internal process of generating a netlist was described in the previous section.

3.2.14. Simulate

There are four simulation modes as follows

	DC Solver: A DC simulation attempts to find a stable DC solution of your circuit.

	DC Sweep: A DC Sweep will plot the DC solution of your circuit across different values of a parameter of a circuit element. You can sweep any numerical parameter of any circuit element in your circuit.

	Transient Analysis: A Transient analysis does a Time-Domain Simulation of your circuit over a certain period of time.

	AC Analysis: AC Analysis does a small signal analysis of your circuit. The input can be any voltage source or current source.

3.2.15. Sharing

Using the Share button one can share the circuit with others using the link generated by the system. The link can be opened and viewed by anyone. However, to make changes one would need to login and the changes saved will be associated with the new user.

3.2.16. Spice simulator

Using the spice simulator one can type the netlist in the code editor box and simulate it. Simulation result window will popup displaying the result.

Note: Add > data.txt at the end of the control line.

.control
run
print all > data.txt
.endc
.end

3.3. eSim Gallery Examples

eSim gallery has 6 example circuits. You can open, re-design, save, and simulate them. These are listed below.

3.3.1. Voltage Divider

[image: ../_images/Voltage_Divider.png]

	Simulation Type: DC Solver

	Simulation Parameters: None

	Simulation

[image: ../_images/Voltage_Divider_Simulation.png]

3.3.2. RC Circuit

[image: ../_images/RC_Circuit.png]

	Simulation Type: Transient Analysis

	
	Simulation Parameters
	
	Start Time: 0

	Stop Time: 100m

	Step Time: 10m

	Simulation

[image: ../_images/RC_Circuit_Simulation.png]

3.3.3. Dual RC Ladder

[image: ../_images/Dual_RC_Ladder.png]

	Simulation Type: Transient Analysis

	
	Simulation Parameters
	
	Start Time: 0

	Stop Time: 50m

	Step Time: 50u

	Simulation

[image: ../_images/Dual_RC_Ladder_Simulation.png]

3.3.4. Bipolar Amplifier

[image: ../_images/Bipolar_Amplifier.png]

	Simulation Type: Transient Analysis

	
	Simulation Parameters
	
	Start Time: 0

	Stop Time: 10m

	Step Time: 10u

	Simulation

[image: ../_images/Bipolar_Amplifier_Simulation1.png]

	Simulation Type: AC Analysis

	
	Simulation Parameters
	
	Type: Decade

	Points: 10

	Start frequency: 10

	Stop frequency: 10Meg

	Simulation

[image: ../_images/Bipolar_Amplifier_Simulation2.png]

3.3.5. Shunt Clipper

[image: ../_images/Shunt_Clipper.png]

	Simulation Type: DC Sweep

	
	Simulation Parameters
	
	Component: V1

	Start Voltage: 0

	Stop Voltage: 1

	Step Voltage: 1m

	Add Expression: -v1#branch

	Simulation

[image: ../_images/Shunt_Clipper_Simulation.png]

3.3.6. RC Circuit Parallel

[image: ../_images/RC_Circuit_Parallel.png]

	Simulation Type: Transient Analysis

	
	Simulation Parameters
	
	Start Time: 0

	Stop Time: 30m

	Step Time: 10u

	Simulation

[image: ../_images/RC_Circuit_Parallel_Simulation.png]

3.4. Screenshots

4. Introduction to Arduino on Cloud

	4.1. Arduino Development Flow

	4.2. Features

	4.3. Screenshots

4.1. Arduino Development Flow

4.1.1. Drawing Components and Rendering in Browser

	Each component is drawn in Inkscape which is exported as .png and .svg. These files are stored in /ArduinoFrontend/src/assets/images/components/. This is a one time process.

	The png files (components) are rendered in the components pane (left pane) in the browser.

	When the components are dropped onto the workspace on the right, the components are rendered using

	SVG if that component does not have any animation, i.e. they remain static during entire the simulation process

	Raphael: if that component produces some animation during the simulation. A basic example would be: glowing of LED.

	The details of these components like name, pins, drawing path, voltage, current, frequency, color of LED, etc., are stored in respective json files /ArduinoFrontend/src/assets/jsons/

4.1.2. Capturing Arduino Project Schematic

	The components from the left pane are dropped onto the workspace. The components and their connections are stored in JSON format.

4.1.3. Simulation

	At first, a basic check is done whether the required components are connected or not.

	The code written is then compiled by Arduino CLI which generates a hex code.

	This hex code is then passed to AVR8js which simulates the components in the browser.

4.2. Features

The Arduino circuit designer is divided into 2 panes. The left pane consists of the components, while the right pane consists of a workspace on which the components will be dropped and the circuit will be designed. More details are given below.

4.2.1. Component categories

The components are categorized as follows:

	Categories

	Components

	General

	Resistor, Breadboard

	Controllers

	Arduino UNO

	Output

	Buzzer, LED, Motor, LCD, Servo Motor, 7 segment display, RGB LED

	Input

	Push button, Ultrasonic Distance Sensor, PIR Sensor, Slide switch, Photo sensor, Temperature Sensor, Potentiometer, Gas Sensor

	Sources

	9v Battery, Coin cell 3v

	Drivers

	Motor driver L298N

	Miscellaneous

	Label, Relay module

4.2.2. Workspace

A workspace is a place where the user can drop the components and design the arduino circuit by connecting the components using wires.

4.2.3. Component Info / Properties

The properties for each component can be set by clicking on the component and changing/setting the desired value in the box on the right. For example, one can change the color of LED, set resistence value, etc. To know more information about the component, one can click the View Info button.

4.2.4. ERC Check

Basic ERC check is done for simulating a circuit. For example, if the wires are connected or not.

4.2.5. View/Download Component List

The list of components and its quantity which are present on the workspace can be viewed or downloaded in CSV format. This come handy for maintaining a check list or a buying list, when one switches from the web based arduino designer to a physical one.

4.2.6. Export

The circuit can be exported as jpeg, png, and svg. This is useful for documenting and printing.

4.2.7. Code editor

A code editor is a place where the users will write the code (logic) for simulation. This is nothing but ino file, which can be downloaded for use in Arduino IDE. There is also a facility to include the supported header files like EEPROM, LiquidCrystal, Servo, SoftwareSerial, Wire, and SPI.

4.2.8. Simulator

The Simulation toggle button starts/stops the simulation. The console window displays the logs and output if any for the simulation.

4.2.9. Saving and Re-opening

The circuits are saved only of an authenticated user and are displayed on the user dashboard. The same can be reopened as well for further editing.

4.2.10. Dashboard

A place where the authenticated user can view the different circuits designed by him/her.

4.2.11. Gallery

A set of example projects (circuit design and code) which can be referred by the users. This is an addon material helpful for the novice users who need to get a feel of the system and the circuit design.

4.3. Screenshots

5. Developer docs

	5.1. APIs

	5.2. DB Switching Instructions

5.1. APIs

List of APIs used in this system

	
POST /arduino/compile

	Compile list of Arduino Sketch File

	Status Codes

	
	201 Created [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2] –

	
GET /arduino/compile/status

	Returns Compilation Status

	Status Codes

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] –

	
GET /auth/google-callback

	Creates user if OAuth token valid

	Status Codes

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] –

	
GET /auth/o/{provider}/

	
	Parameters

	
	provider (string) –

	Status Codes

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] –

	Response JSON Object

	
	access (string) – (read only)

	refresh (string) – (read only)

	user (string) – (read only)

	
POST /auth/o/{provider}/

	
	Parameters

	
	provider (string) –

	Request JSON Object

	
	access (string) – (read only)

	refresh (string) – (read only)

	user (string) – (read only)

	Status Codes

	
	201 Created [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2] –

	Response JSON Object

	
	access (string) – (read only)

	refresh (string) – (read only)

	user (string) – (read only)

	
POST /auth/token/login/

	Use this endpoint to obtain user authentication token.

	Request JSON Object

	
	password (string) –

	username (string) –

	Status Codes

	
	201 Created [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2] –

	Response JSON Object

	
	password (string) –

	username (string) –

	
POST /auth/token/logout/

	Use this endpoint to logout user (remove user authentication token).

	Status Codes

	
	201 Created [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2] –

	
GET /auth/users/

	
	Status Codes

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] –

	Response JSON Object

	
	[].email (string) –

	[].id (integer) – (read only)

	[].username (string) – Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only. (read only)

	
POST /auth/users/

	
	Request JSON Object

	
	email (string) –

	id (integer) – (read only)

	password (string) – (required)

	username (string) – Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only. (required)

	Status Codes

	
	201 Created [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2] –

	Response JSON Object

	
	email (string) –

	id (integer) – (read only)

	password (string) – (required)

	username (string) – Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only. (required)

	
POST /auth/users/activation/

	
	Request JSON Object

	
	token (string) – (required)

	uid (string) – (required)

	Status Codes

	
	201 Created [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2] –

	Response JSON Object

	
	token (string) – (required)

	uid (string) – (required)

	
GET /auth/users/me/

	
	Status Codes

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] –

	Response JSON Object

	
	[].email (string) –

	[].id (integer) – (read only)

	[].username (string) – Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only. (read only)

	
PUT /auth/users/me/

	
	Request JSON Object

	
	email (string) –

	id (integer) – (read only)

	username (string) – Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only. (read only)

	Status Codes

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] –

	Response JSON Object

	
	email (string) –

	id (integer) – (read only)

	username (string) – Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only. (read only)

	
PATCH /auth/users/me/

	
	Request JSON Object

	
	email (string) –

	id (integer) – (read only)

	username (string) – Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only. (read only)

	Status Codes

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] –

	Response JSON Object

	
	email (string) –

	id (integer) – (read only)

	username (string) – Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only. (read only)

	
DELETE /auth/users/me/

	
	Status Codes

	
	204 No Content [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] –

	
POST /auth/users/resend_activation/

	
	Request JSON Object

	
	email (string) – (required)

	Status Codes

	
	201 Created [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2] –

	Response JSON Object

	
	email (string) – (required)

	
POST /auth/users/reset_password/

	
	Request JSON Object

	
	email (string) – (required)

	Status Codes

	
	201 Created [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2] –

	Response JSON Object

	
	email (string) – (required)

	
POST /auth/users/reset_password_confirm/

	
	Request JSON Object

	
	new_password (string) – (required)

	token (string) – (required)

	uid (string) – (required)

	Status Codes

	
	201 Created [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2] –

	Response JSON Object

	
	new_password (string) – (required)

	token (string) – (required)

	uid (string) – (required)

	
POST /auth/users/reset_username/

	
	Request JSON Object

	
	email (string) – (required)

	Status Codes

	
	201 Created [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2] –

	Response JSON Object

	
	email (string) – (required)

	
POST /auth/users/reset_username_confirm/

	
	Request JSON Object

	
	new_username (string) – Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only. (required)

	Status Codes

	
	201 Created [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2] –

	Response JSON Object

	
	new_username (string) – Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only. (required)

	
POST /auth/users/set_password/

	
	Request JSON Object

	
	current_password (string) – (required)

	new_password (string) – (required)

	Status Codes

	
	201 Created [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2] –

	Response JSON Object

	
	current_password (string) – (required)

	new_password (string) – (required)

	
POST /auth/users/set_username/

	
	Request JSON Object

	
	new_username (string) – Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only. (required)

	Status Codes

	
	201 Created [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2] –

	Response JSON Object

	
	new_username (string) – Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only. (required)

	
GET /auth/users/{id}/

	
	Parameters

	
	id (integer) – A unique integer value identifying this user.

	Status Codes

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] –

	Response JSON Object

	
	email (string) –

	id (integer) – (read only)

	username (string) – Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only. (read only)

	
PUT /auth/users/{id}/

	
	Parameters

	
	id (integer) – A unique integer value identifying this user.

	Request JSON Object

	
	email (string) –

	id (integer) – (read only)

	username (string) – Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only. (read only)

	Status Codes

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] –

	Response JSON Object

	
	email (string) –

	id (integer) – (read only)

	username (string) – Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only. (read only)

	
PATCH /auth/users/{id}/

	
	Parameters

	
	id (integer) – A unique integer value identifying this user.

	Request JSON Object

	
	email (string) –

	id (integer) – (read only)

	username (string) – Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only. (read only)

	Status Codes

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] –

	Response JSON Object

	
	email (string) –

	id (integer) – (read only)

	username (string) – Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only. (read only)

	
DELETE /auth/users/{id}/

	
	Parameters

	
	id (integer) – A unique integer value identifying this user.

	Status Codes

	
	204 No Content [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] –

	
GET /circuits/

	Listing Published Circuits

	Status Codes

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] –

	Response JSON Object

	
	[].author (integer) –

	[].base64_image (string) – (read only)

	[].circuit_id (string) – (read only)

	[].data_dump (string) – (required)

	[].description (string) – (required)

	[].last_updated (string) – (read only)

	[].publish_request_time (string) – (read only)

	[].sub_title (string) –

	[].title (string) – (required)

	
GET /circuits/{circuit_id}/

	Listing Published Circuits

	Parameters

	
	circuit_id (string) – A UUID string identifying this circuit.

	Status Codes

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] –

	Response JSON Object

	
	author (integer) –

	base64_image (string) – (read only)

	circuit_id (string) – (read only)

	data_dump (string) – (required)

	description (string) – (required)

	last_updated (string) – (read only)

	publish_request_time (string) – (read only)

	sub_title (string) –

	title (string) – (required)

	
GET /components/

	Listing All Library Details

	Query Parameters

	
	name__icontains (string) –

	keyword__icontains (string) –

	description__icontains (string) –

	component_library__library_name__icontains (string) –

	component_library (string) –

	symbol_prefix (string) –

	Status Codes

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] –

	Response JSON Object

	
	[].alternate_component[].dmg (integer) – (required)

	[].alternate_component[].full_name (string) – (required)

	[].alternate_component[].id (integer) – (read only)

	[].alternate_component[].part (string) – (required)

	[].alternate_component[].svg_path (string) – (required)

	[].component_library (string) – (required)

	[].data_link (string) – (required)

	[].description (string) – (required)

	[].full_name (string) – (required)

	[].id (integer) – (read only)

	[].keyword (string) – (required)

	[].name (string) – (required)

	[].svg_path (string) – (required)

	[].symbol_prefix (string) – (required)

	[].thumbnail_path (string) – (required)

	
GET /components/{id}/

	Listing All Library Details

	Parameters

	
	id (integer) – A unique integer value identifying this library component.

	Status Codes

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] –

	Response JSON Object

	
	alternate_component[].dmg (integer) – (required)

	alternate_component[].full_name (string) – (required)

	alternate_component[].id (integer) – (read only)

	alternate_component[].part (string) – (required)

	alternate_component[].svg_path (string) – (required)

	component_library (string) – (required)

	data_link (string) – (required)

	description (string) – (required)

	full_name (string) – (required)

	id (integer) – (read only)

	keyword (string) – (required)

	name (string) – (required)

	svg_path (string) – (required)

	symbol_prefix (string) – (required)

	thumbnail_path (string) – (required)

	
GET /libraries/

	Listing All Library Details

	Query Parameters

	
	library_name (string) –

	Status Codes

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] –

	Response JSON Object

	
	[].id (integer) – (read only)

	[].library_name (string) – (required)

	[].saved_on (string) – (read only)

	
GET /libraries/{id}/

	Listing All Library Details

	Parameters

	
	id (integer) – A unique integer value identifying this library.

	Status Codes

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] –

	Response JSON Object

	
	id (integer) – (read only)

	library_name (string) – (required)

	saved_on (string) – (read only)

	
GET /publish/circuit/

	CRUD for viewing unpublished / published circuits (Permission Groups)

	Status Codes

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] –

	Response JSON Object

	
	[].author (integer) –

	[].base64_image (string) – (read only)

	[].circuit_id (string) – (read only)

	[].data_dump (string) – (required)

	[].description (string) – (required)

	[].last_updated (string) – (read only)

	[].publish_request_time (string) – (read only)

	[].sub_title (string) –

	[].title (string) – (required)

	
POST /publish/circuit/

	CRUD for viewing unpublished / published circuits (Permission Groups)

	Request JSON Object

	
	author (integer) –

	base64_image (string) – (read only)

	circuit_id (string) – (read only)

	data_dump (string) – (required)

	description (string) – (required)

	last_updated (string) – (read only)

	publish_request_time (string) – (read only)

	sub_title (string) –

	title (string) – (required)

	Status Codes

	
	201 Created [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2] –

	Response JSON Object

	
	author (integer) –

	base64_image (string) – (read only)

	circuit_id (string) – (read only)

	data_dump (string) – (required)

	description (string) – (required)

	last_updated (string) – (read only)

	publish_request_time (string) – (read only)

	sub_title (string) –

	title (string) – (required)

	
GET /publish/circuit/{circuit_id}/

	CRUD for viewing unpublished / published circuits (Permission Groups)

	Parameters

	
	circuit_id (string) – A UUID string identifying this circuit.

	Status Codes

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] –

	Response JSON Object

	
	author (integer) –

	base64_image (string) – (read only)

	circuit_id (string) – (read only)

	data_dump (string) – (required)

	description (string) – (required)

	last_updated (string) – (read only)

	publish_request_time (string) – (read only)

	sub_title (string) –

	title (string) – (required)

	
PUT /publish/circuit/{circuit_id}/

	CRUD for viewing unpublished / published circuits (Permission Groups)

	Parameters

	
	circuit_id (string) – A UUID string identifying this circuit.

	Request JSON Object

	
	author (integer) –

	base64_image (string) – (read only)

	circuit_id (string) – (read only)

	data_dump (string) – (required)

	description (string) – (required)

	last_updated (string) – (read only)

	publish_request_time (string) – (read only)

	sub_title (string) –

	title (string) – (required)

	Status Codes

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] –

	Response JSON Object

	
	author (integer) –

	base64_image (string) – (read only)

	circuit_id (string) – (read only)

	data_dump (string) – (required)

	description (string) – (required)

	last_updated (string) – (read only)

	publish_request_time (string) – (read only)

	sub_title (string) –

	title (string) – (required)

	
PATCH /publish/circuit/{circuit_id}/

	CRUD for viewing unpublished / published circuits (Permission Groups)

	Parameters

	
	circuit_id (string) – A UUID string identifying this circuit.

	Request JSON Object

	
	author (integer) –

	base64_image (string) – (read only)

	circuit_id (string) – (read only)

	data_dump (string) – (required)

	description (string) – (required)

	last_updated (string) – (read only)

	publish_request_time (string) – (read only)

	sub_title (string) –

	title (string) – (required)

	Status Codes

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] –

	Response JSON Object

	
	author (integer) –

	base64_image (string) – (read only)

	circuit_id (string) – (read only)

	data_dump (string) – (required)

	description (string) – (required)

	last_updated (string) – (read only)

	publish_request_time (string) – (read only)

	sub_title (string) –

	title (string) – (required)

	
DELETE /publish/circuit/{circuit_id}/

	CRUD for viewing unpublished / published circuits (Permission Groups)

	Parameters

	
	circuit_id (string) – A UUID string identifying this circuit.

	Status Codes

	
	204 No Content [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] –

	
GET /publish/publishing/

	Publishing CRUD Operations

	Status Codes

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] –

	Response JSON Object

	
	[].circuit.author (integer) –

	[].circuit.base64_image (string) – (read only)

	[].circuit.circuit_id (string) – (read only)

	[].circuit.data_dump (string) – (required)

	[].circuit.description (string) – (required)

	[].circuit.last_updated (string) – (read only)

	[].circuit.publish_request_time (string) – (read only)

	[].circuit.sub_title (string) –

	[].circuit.title (string) – (required)

	[].published (boolean) –

	[].reviewed_by (string) –

	[].tags[].description (string) – (required)

	[].tags[].id (integer) – (read only)

	[].tags[].tag (string) – (required)

	
POST /publish/publishing/

	Publishing CRUD Operations

	Request JSON Object

	
	circuit.author (integer) –

	circuit.base64_image (string) – (read only)

	circuit.circuit_id (string) – (read only)

	circuit.data_dump (string) – (required)

	circuit.description (string) – (required)

	circuit.last_updated (string) – (read only)

	circuit.publish_request_time (string) – (read only)

	circuit.sub_title (string) –

	circuit.title (string) – (required)

	published (boolean) –

	reviewed_by (string) –

	tags[].description (string) – (required)

	tags[].id (integer) – (read only)

	tags[].tag (string) – (required)

	Status Codes

	
	201 Created [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2] –

	Response JSON Object

	
	circuit.author (integer) –

	circuit.base64_image (string) – (read only)

	circuit.circuit_id (string) – (read only)

	circuit.data_dump (string) – (required)

	circuit.description (string) – (required)

	circuit.last_updated (string) – (read only)

	circuit.publish_request_time (string) – (read only)

	circuit.sub_title (string) –

	circuit.title (string) – (required)

	published (boolean) –

	reviewed_by (string) –

	tags[].description (string) – (required)

	tags[].id (integer) – (read only)

	tags[].tag (string) – (required)

	
GET /publish/publishing/{id}/

	Publishing CRUD Operations

	Parameters

	
	id (integer) – A unique integer value identifying this publish.

	Status Codes

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] –

	Response JSON Object

	
	circuit.author (integer) –

	circuit.base64_image (string) – (read only)

	circuit.circuit_id (string) – (read only)

	circuit.data_dump (string) – (required)

	circuit.description (string) – (required)

	circuit.last_updated (string) – (read only)

	circuit.publish_request_time (string) – (read only)

	circuit.sub_title (string) –

	circuit.title (string) – (required)

	published (boolean) –

	reviewed_by (string) –

	tags[].description (string) – (required)

	tags[].id (integer) – (read only)

	tags[].tag (string) – (required)

	
PUT /publish/publishing/{id}/

	Publishing CRUD Operations

	Parameters

	
	id (integer) – A unique integer value identifying this publish.

	Request JSON Object

	
	circuit.author (integer) –

	circuit.base64_image (string) – (read only)

	circuit.circuit_id (string) – (read only)

	circuit.data_dump (string) – (required)

	circuit.description (string) – (required)

	circuit.last_updated (string) – (read only)

	circuit.publish_request_time (string) – (read only)

	circuit.sub_title (string) –

	circuit.title (string) – (required)

	published (boolean) –

	reviewed_by (string) –

	tags[].description (string) – (required)

	tags[].id (integer) – (read only)

	tags[].tag (string) – (required)

	Status Codes

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] –

	Response JSON Object

	
	circuit.author (integer) –

	circuit.base64_image (string) – (read only)

	circuit.circuit_id (string) – (read only)

	circuit.data_dump (string) – (required)

	circuit.description (string) – (required)

	circuit.last_updated (string) – (read only)

	circuit.publish_request_time (string) – (read only)

	circuit.sub_title (string) –

	circuit.title (string) – (required)

	published (boolean) –

	reviewed_by (string) –

	tags[].description (string) – (required)

	tags[].id (integer) – (read only)

	tags[].tag (string) – (required)

	
PATCH /publish/publishing/{id}/

	Publishing CRUD Operations

	Parameters

	
	id (integer) – A unique integer value identifying this publish.

	Request JSON Object

	
	circuit.author (integer) –

	circuit.base64_image (string) – (read only)

	circuit.circuit_id (string) – (read only)

	circuit.data_dump (string) – (required)

	circuit.description (string) – (required)

	circuit.last_updated (string) – (read only)

	circuit.publish_request_time (string) – (read only)

	circuit.sub_title (string) –

	circuit.title (string) – (required)

	published (boolean) –

	reviewed_by (string) –

	tags[].description (string) – (required)

	tags[].id (integer) – (read only)

	tags[].tag (string) – (required)

	Status Codes

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] –

	Response JSON Object

	
	circuit.author (integer) –

	circuit.base64_image (string) – (read only)

	circuit.circuit_id (string) – (read only)

	circuit.data_dump (string) – (required)

	circuit.description (string) – (required)

	circuit.last_updated (string) – (read only)

	circuit.publish_request_time (string) – (read only)

	circuit.sub_title (string) –

	circuit.title (string) – (required)

	published (boolean) –

	reviewed_by (string) –

	tags[].description (string) – (required)

	tags[].id (integer) – (read only)

	tags[].tag (string) – (required)

	
DELETE /publish/publishing/{id}/

	Publishing CRUD Operations

	Parameters

	
	id (integer) – A unique integer value identifying this publish.

	Status Codes

	
	204 No Content [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] –

	
POST /save

	API to save the state of project to db which can be loaded or shared later

	Status Codes

	
	201 Created [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2] –

	Response JSON Object

	
	base64_image (string) – (read only)

	create_time (string) – (read only)

	data_dump (string) – (required)

	description (string) –

	name (string) –

	owner (integer) –

	save_id (string) –

	save_time (string) – (read only)

	shared (boolean) –

	
GET /save/list

	Returns Saved data for given username,
Only user who saved the state can access it
THIS WILL ESCAPE DOUBLE QUOTES

	Status Codes

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] –

	Response JSON Object

	
	base64_image (string) – (read only)

	create_time (string) – (read only)

	data_dump (string) – (required)

	description (string) –

	name (string) –

	owner (integer) –

	save_id (string) –

	save_time (string) – (read only)

	shared (boolean) –

	
GET /save/{save_id}

	Returns Saved data for given save id ,
Only user who saved the state can access / update it
THIS WILL ESCAPE DOUBLE QUOTES

	Parameters

	
	save_id (string) –

	Status Codes

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] –

	Response JSON Object

	
	base64_image (string) – (read only)

	create_time (string) – (read only)

	data_dump (string) – (required)

	description (string) –

	name (string) –

	owner (integer) –

	save_id (string) –

	save_time (string) – (read only)

	shared (boolean) –

	
POST /save/{save_id}

	Returns Saved data for given save id ,
Only user who saved the state can access / update it
THIS WILL ESCAPE DOUBLE QUOTES

	Parameters

	
	save_id (string) –

	Status Codes

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] –

	Response JSON Object

	
	base64_image (string) – (read only)

	create_time (string) – (read only)

	data_dump (string) – (required)

	description (string) –

	name (string) –

	owner (integer) –

	save_id (string) –

	save_time (string) – (read only)

	shared (boolean) –

	
POST /save/{save_id}/sharing/{sharing}

	Enables sharing for the given saved state

	Parameters

	
	save_id (string) –

	sharing (string) –

	Status Codes

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] –

	Response JSON Object

	
	base64_image (string) – (read only)

	create_time (string) – (read only)

	data_dump (string) – (required)

	description (string) –

	name (string) –

	owner (integer) –

	save_id (string) –

	save_time (string) – (read only)

	shared (boolean) –

	
GET /simulation/status/{task_id}

	Returns Simulation results for ‘task_id’ provided after
uploading the netlist
/api/task/<uuid>

	Parameters

	
	task_id (string) –

	Status Codes

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] –

	
POST /simulation/upload

	API for NetlistUpload

Requires a multipart/form-data POST Request with netlist file in the
‘file’ parameter

	Status Codes

	
	201 Created [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2] –

	
GET /tags/

	CRUD for Tags

	Status Codes

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] –

	Response JSON Object

	
	[].description (string) – (required)

	[].id (integer) – (read only)

	[].tag (string) – (required)

	
POST /tags/

	CRUD for Tags

	Request JSON Object

	
	description (string) – (required)

	id (integer) – (read only)

	tag (string) – (required)

	Status Codes

	
	201 Created [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2] –

	Response JSON Object

	
	description (string) – (required)

	id (integer) – (read only)

	tag (string) – (required)

	
GET /tags/{id}/

	CRUD for Tags

	Parameters

	
	id (integer) – A unique integer value identifying this circuit tag.

	Status Codes

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] –

	Response JSON Object

	
	description (string) – (required)

	id (integer) – (read only)

	tag (string) – (required)

	
PUT /tags/{id}/

	CRUD for Tags

	Parameters

	
	id (integer) – A unique integer value identifying this circuit tag.

	Request JSON Object

	
	description (string) – (required)

	id (integer) – (read only)

	tag (string) – (required)

	Status Codes

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] –

	Response JSON Object

	
	description (string) – (required)

	id (integer) – (read only)

	tag (string) – (required)

	
PATCH /tags/{id}/

	CRUD for Tags

	Parameters

	
	id (integer) – A unique integer value identifying this circuit tag.

	Request JSON Object

	
	description (string) – (required)

	id (integer) – (read only)

	tag (string) – (required)

	Status Codes

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] –

	Response JSON Object

	
	description (string) – (required)

	id (integer) – (read only)

	tag (string) – (required)

	
DELETE /tags/{id}/

	CRUD for Tags

	Parameters

	
	id (integer) – A unique integer value identifying this circuit tag.

	Status Codes

	
	204 No Content [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] –

5.2. DB Switching Instructions

	To switch between databases, follow the instructions below

	Please note all data in the database will be lost

	Turn off existing containers docker-compose -f docker-compose.dev.yml down

	Switch to the needed config inside .env then copy it to prod config cp .env .env.prod, make needed changes (if required) in the prod config

	Uncomment the appropriate DB Block inside docker-compse.(dev/prod).yml, please note only one db block should be present

	Build Containers and run db migrations again ./first_run.dev.sh

6. Contributing

	6.1. Contributing

	6.2. Contributing Guidelines

	6.3. Creating a new issue

	6.4. Pull request

6.1. Contributing

Want to contribute? Great to know! eSim and Arduino on Cloud is an open source project and we welcome contributions from all. We would be very happy to collaborate with you. To contribute to this project please make sure that you first discuss with us and follow the guidelines given.

6.1.1. Types of contributions

Contributions can be of different types. Some are listed below.

	Report a bug

	Suggest a feature

	Fix a bug

	Improve UI

	Contribute a new feature

	Update documentation

6.1.2. Reporting Bug / Suggesting Features

If you just want to report a bug in our system or want to suggest a new feature or improve UI, etc., then first browse through our existing issues to check whether this has been addressed or not. If not, feel free to create a new issue. Please read the new issue guidelines [https://esim-cloud.readthedocs.io/en/latest/contribute/NewIssue.html] given.

6.1.3. Step 1: Assign/Create Issues

6.1.3.1. Existing issues

	Before you start contributing, first browse through the existing issues and pull requests to know whether someone else has already fixed or is already working on it.

	If an issue is already created but no one is assigned to it, create a comment ‘Assignee: @YourGitHubUsername’. This will let the community know that you are addressing this issue.

	Just a suggestion: If you are a new contributor you can look at issues tagged as ‘good first issue’ tag. These are comparatively smaller and easier to address than the other ones.

6.1.3.2. New issues

	Before you create a new issue on GitHub, first discuss your ideas about the new feature or notify the bug on our appropriate Discord channels. Our contributors will interact with you and help you take it further.

	Once the feature is approved or the bug is confirmed, based on your discussion with the contributors on our discord channel, create a new issue on GitHub. Please read the guidelines [https://esim-cloud.readthedocs.io/en/latest/contribute/NewIssue.html] for creating a new issue.

6.1.3.3. Inactivity Period

	If you have assigned the issue to yourself (existing or new), we request you to be active on your forked repository.

	There might be a situation when you have other priorities or sometimes you might be taking a break, etc., wherein you may not be able to contribute to your forked repo for more than 3 weeks.

	In such a case, we request you to just ping us on Discord and inform us about it also mentioning your inactivity period.

	An inactivity of over 3 weeks in your repo or no discussion on Discord, without prior intimation, will be considered that you are no longer interested. In such a case the assignee name will be removed so that the issue can be solved by someone else. You are however free to assign it to yourself again when you are available, if the issue is not assigned to someone else.

6.1.4. Step 2: Fork Repository

	The first step is to fork the repository so that you have your own repository in which you can work on.

	Create a new branch (feature or bugfix) from the Develop branch and work on the newly created branch. This way if we make some changes to the Develop branch in our repo, you can upstream it at anytime for maintaining the updated codebase.

6.1.5. Step 3: Contribute

	Once the branch created, you can start contributing (coding, documentation, test cases, etc.). Make sure that you follow the contributing guidelines [https://esim-cloud.readthedocs.io/en/latest/contribute/ContributingGuidelines.html].

	We use GitHub Actions for continuous integrations that runs linting and testing operations.

	There might be some changes to the original repository which will not reflect in your forked repository automatically. If you want to update it, sync it using the steps given in the link: https://help.github.com/articles/syncing-a-fork/

6.1.6. Step 4: Make a pull request

	When you feel that you are ready to merge your contributions into our repository, create a pull request from your feature/bugfix branch to our Develop branch.

	Select an appropriate label from the list E.g. enhancement, bug fix, etc.

	Please go through the pull request guidelines [https://esim-cloud.readthedocs.io/en/latest/contribute/PullRequest.html].

	Our reviewing team will review your pull request made and will interact with you by posting comments. You may be asked to modify incase there is any issue.

	We request you to be active in responding to our comments so as to merge/close the issue.

	Incase you do not respond to our comments within a week, we will close it. Feel free to open it again when you are ready to interact.

6.2. Contributing Guidelines

	Follow the django coding style: https://docs.djangoproject.com/en/dev/internals/contributing/writing-code/coding-style/

	If you are modifying or adding a feature then write unit test cases.

	Avoid unnecessary modification of existing code. Ofcourse, you are free to optimize and resolve bugs.

	Avoid duplication of code

	Break your code/logic into different functions and add comments for better understanding.

	If your contributions have some dependencies or they modify existing structure, then update the README.md file accordingly. Also feel free to add more documentation files.

	Commit your code on a regular basis with meaningful commit messages.

6.3. Creating a new issue

6.3.1. Title

Enter a crisp and meaningful title.

6.3.2. Description

	Describe your issue in details.

	If its a bug or error provide animated image (gif) or screenshots supporting your issue and showing the problem.

	If its a new feature which has changes in UI, provide wireframes that will help us visualize your suggested feature.

	Mention an approximate time that will required for you to complete and make a pull request (Only for developers). You can ignore this if you are just reporting or suggesting.

	Tag the issue appropriately, whether it belongs to ‘eSim’ or ‘Arduino’. Choose the type of issue ‘enhancement’, ‘bug’ etc.

	Finally, mention ‘Assignee: @YourGitHubUsername’. This will let the community know that you are addressing this issue. You can ignore this if you are just reporting or suggesting.

6.4. Pull request

A pull request is one of the most essential parts of sharing your contributions with us. Please make sure that you read and follow the guidelines. This will help us in accepting the pull request easily.

6.4.1. Guidelines

	Each pull request should be for a single feature or addressing a single problem only.

	Avoid handling multiple features or bug fixes into one pull request.

	Ensure that you create it for the appropriate branch only.

	Write a brief description about your contribution and what problem does it solve. A pull request with good description is always appreciated and will be accepted easily.

	Once the pull request is made, GitHub actions will show linting errors if any and the different test results. If all goes well then ‘All checks have passed’ will be displayed on your pull request. If any one fails, you can check the details and act accordingly.

7. Credits

7.1. eSim on the Cloud

	Darsh Patel [https://github.com/darshkpatel]

	Darshan Sudake [https://github.com/dssudake]

	Faisal Ahmed [https://github.com/felixfaisal]

	Rohit Geddam [https://github.com/rohitgeddam]

7.2. Arduino on the Cloud

	Navonil Das [https://github.com/NavonilDas]

	Meet Shah [https://github.com/meet-10]

8. Arduino Frontend Guide

8.1. Serve on a Local Machine

Note: Required Node JS and Angular 7

	For installing nodejs and npm visit (https://nodejs.org/en/download/)

Open Command prompt (or powershell) and enter the following:

npm install -g @angular/cli

ng --version

8.1.1. Without Docker

Please Follow the Steps.

	Open Command promt

	Navigate to folder dist/eSim-cloud/ArduinoFrontend/

	Execute the following command to start Angular server:

ng serve

	For more serve commands visit (https://angular.io/cli/serve)

	To build the app and deploy your Angular application to a remote server:

ng build --prod

8.1.2. With Docker

9. Configuring Production Environment

	Install Docker and docker-compose for server OS

	git clone git@github.com:frg-fossee/eSim-Cloud.git && cd eSim-Cloud

	cp .env .env.prod (PLEASE CHANGE DEFAULT CREDENTIALS IN THE .env.prod FILE)

	docker-compose -f docker-compose.prod.yml --env-file .env.prod up --scale django=2 --scale celery=3 -d

10. Configuring Development Environment

	Install docker-ce and docker-compose for your OS

	To Build/ReBuild necessary containers using

docker-compose -f docker-compose.dev.yml build

(Please note these containers are only for dev environment, in production compiled files will be served by nginx)

	To run arduino-frontend along with all backend containers

docker-compose -f docker-compose.dev.yml up arduino-frontend

Our Web Application is supported by the following browsers:

	Google Chrome

	Mozilla Firefox

	Opera

	Microsoft Edge

	Safari

	Creating an Component for Simulator

Creating an Component for Simulator

 HTTP Routing Table

 /arduino |
 /auth |
 /circuits |
 /components |
 /libraries |
 /publish |
 /save |
 /simulation |
 /tags

 		 	

 		
 /arduino	

 	
 	
 GET /arduino/compile/status	
 null

 	
 	
 POST /arduino/compile	
 null

 		 	

 		
 /auth	

 	
 	
 GET /auth/google-callback	
 null

 	
 	
 GET /auth/o/{provider}/	
 null

 	
 	
 GET /auth/users/	
 null

 	
 	
 GET /auth/users/me/	
 null

 	
 	
 GET /auth/users/{id}/	
 null

 	
 	
 POST /auth/o/{provider}/	
 null

 	
 	
 POST /auth/token/login/	
 null

 	
 	
 POST /auth/token/logout/	
 null

 	
 	
 POST /auth/users/	
 null

 	
 	
 POST /auth/users/activation/	
 null

 	
 	
 POST /auth/users/resend_activation/	
 null

 	
 	
 POST /auth/users/reset_password/	
 null

 	
 	
 POST /auth/users/reset_password_confirm/	
 null

 	
 	
 POST /auth/users/reset_username/	
 null

 	
 	
 POST /auth/users/reset_username_confirm/	
 null

 	
 	
 POST /auth/users/set_password/	
 null

 	
 	
 POST /auth/users/set_username/	
 null

 	
 	
 PUT /auth/users/me/	
 null

 	
 	
 PUT /auth/users/{id}/	
 null

 	
 	
 DELETE /auth/users/me/	
 null

 	
 	
 DELETE /auth/users/{id}/	
 null

 	
 	
 PATCH /auth/users/me/	
 null

 	
 	
 PATCH /auth/users/{id}/	
 null

 		 	

 		
 /circuits	

 	
 	
 GET /circuits/	
 null

 	
 	
 GET /circuits/{circuit_id}/	
 null

 		 	

 		
 /components	

 	
 	
 GET /components/	
 null

 	
 	
 GET /components/{id}/	
 null

 		 	

 		
 /libraries	

 	
 	
 GET /libraries/	
 null

 	
 	
 GET /libraries/{id}/	
 null

 		 	

 		
 /publish	

 	
 	
 GET /publish/circuit/	
 null

 	
 	
 GET /publish/circuit/{circuit_id}/	
 null

 	
 	
 GET /publish/publishing/	
 null

 	
 	
 GET /publish/publishing/{id}/	
 null

 	
 	
 POST /publish/circuit/	
 null

 	
 	
 POST /publish/publishing/	
 null

 	
 	
 PUT /publish/circuit/{circuit_id}/	
 null

 	
 	
 PUT /publish/publishing/{id}/	
 null

 	
 	
 DELETE /publish/circuit/{circuit_id}/	
 null

 	
 	
 DELETE /publish/publishing/{id}/	
 null

 	
 	
 PATCH /publish/circuit/{circuit_id}/	
 null

 	
 	
 PATCH /publish/publishing/{id}/	
 null

 		 	

 		
 /save	

 	
 	
 GET /save/list	
 null

 	
 	
 GET /save/{save_id}	
 null

 	
 	
 POST /save	
 null

 	
 	
 POST /save/{save_id}	
 null

 	
 	
 POST /save/{save_id}/sharing/{sharing}	
 null

 		 	

 		
 /simulation	

 	
 	
 GET /simulation/status/{task_id}	
 null

 	
 	
 POST /simulation/upload	
 API for NetlistUpload

 		 	

 		
 /tags	

 	
 	
 GET /tags/	
 null

 	
 	
 GET /tags/{id}/	
 null

 	
 	
 POST /tags/	
 null

 	
 	
 PUT /tags/{id}/	
 null

 	
 	
 DELETE /tags/{id}/	
 null

 	
 	
 PATCH /tags/{id}/	
 null

Index

 _images/Shunt_Clipper.png
@ eSim Shunt Clipper

[ERNC NG ® 28 o0

Components List

Q h ’

Searcny

NAME -
Transistor_BJT v
esim_Hybrid v
Device. v
Transistor_FET v
Triae_Thyristor v
pepice v
esim_Sources v
Transistor_IGBT v

Analog v

P

"
€]

O won

oo

Grid Properties

a4~ || Landscape ¥

Gigsze Gralayout

Components Position

Schematic Description

A Clipper circuit in which
fthe diode i connected in
'shunt tothe input signal
and that attenuates the
positive portions of the
aveforn, s termed a5
Positive Shunt Clipper.

_images/Shunt_Clipper_Simulation.png
Simulation Result for * Shunt Clipper *

GRAPH OUTPUT

SIUNIT

_images/RC_Circuit_Parallel_Simulation.png

_images/RC_Circuit_Simulation.png
Simulation Result for * RC Circuit *

GRAPH OUTPUT

SIUNIT

_images/docker.png
Docker Containers

Django Container

Nginx Container
User

Compiled Frontend
Files

_images/flow_lib_to_svg.png
Kicad symbols
lib & .dcm
files

parser

mxgraph

svg files

library

Component
list

_images/Voltage_Divider.png
@ esim vohtage Divider Lo

DR R &8 8 ® 8 o a a @ i= 0
Components List Properties
Q h ’ Grid Properties
Searcny 1
NAME - p A4~ || Landscape ~
Giasze GridLayout
Transistor 8T v
T Pl Components Position
esim_Hybrid v
Device v 1 RERRES
S—— . L1
2
Trisc_ Thytistor v T
Schematic Description
pepice v & veltage divider 1s o
sinple circuit which turns a
eSim_Sources v Hare voltage into o snatier
one: Using Just two series
1 resistars and an input
Transistor_IGBT v S vatage. 4
Analog v
Motor v

= v

_images/Voltage_Divider_Simulation.png
DC Solver Output

Simulation Result for * Voltage Divider *

OUTPUT

_images/flow_schematic_to_simulation.png
Schematic
grid

mxgraph

XML

ngspice

Netlist

Simulation

chartjs

_images/Dual_RC_Ladder_Simulation.png
Simulation Result for * Dual RC Ladder *

GRAPH OUTPUT

_images/RC_Circuit.png
@ esim reciuit

[ERNC NG ® e 8 [0} Ed oA a a = @
Components List
aQ h e
Search By d 1
NAME -
w
‘eSim_Hybrid v Pwi(Om 0 0.5m 5 50m 5 50.5m 0 100m 0) A
Device v
1
Transistor_FET v gasiees
‘Triac_Thyristor v 771:1
E
pspice v
esim_Sources v
Transistor 1G8T v
Ansiog v anon |
T onon
Mator v

=) v

oo

Properties
Grid Properties

a4~ || Landscape ¥

Gigsze Gralayout

Components Position

]

Schematic Description

lAn RC circuit s a circuit
with both a resistor (R) and
a capacitor (C). RC circuits
are fregent elesent in
Jelectranic devices.

/

_images/Bipolar_Amplifier_Simulation2.png
Simulation Result for * Bipolar Amplifier *

GRAPH OUTPUT

_images/Dual_RC_Ladder.png
@ eSim Dual R Ladder Lo

DR R &8 8 ® 8 o a a @ i= 0
Components List Proper
Q h ’ Grid Properties
Searcny q g
NAME - A4~ || Landscape ~
1 Giasze GridLayout
” 2
Transistor 8T v o 7w
Components Position
esim_Hybrid v A 1

dcOPULSE@S Tututu11)

bevce v E | =

Tansistor_FET v ERREEE]
o = e
Tric.Thyrstor v i i &
Schematic Description
pspice v =
FThES 15 an dual AC tadder
circut? ith Passive
esim_Sources v Companents. The- input 1s a
aNoa Voltage waverora (a pulse)
Versus tine, and the output
Trnsistor IGBT v T ooa 12 avetorn o5 wett.)

Anaiog v

_images/RC_Circuit_Parallel.png
@ eSim R Circuit (Parallel)

[ERNC NG B e e o0

Components List

Q h ’

Searcny

NAME -
Transistor_BJT v
esim_Hybrid v
Device v
Transistor_FET v
Triac_Thyristor v
pspice v
eSim._Sources v
Transistor_1G8T v

. o

0
DCoso1200

oo

Properties
Grid Properties

a4~ || Landscape ¥

Gigsze Gralayout

Components Position

Schematic Description

lAn RC circuit s a circuit
with both a resistor (R) and
a capacitor (C). RC circuits
are fregent elesent in
lectronic devices.

nav.xhtml

 Table of Contents

 		
 Welcome to eSim and Arduino on Cloud’s documentation!

 		
 Overview

 		
 eSim on Cloud

 		
 Arduino on Cloud

 		
 Architecture and Installation

 		
 Installation and Usage

 		
 Production Environment

 		
 Development Environment

 		
 Useful Commands

 		
 Environment Variables

 		
 Introduction to eSim on Cloud

 		
 eSim Development Flow

 		
 Reading Component Symbol Library files and Rendering in the Browser

 		
 Generating XML files

 		
 Generating Netlist

 		
 Simulation

 		
 JSON format returned by parser

 		
 Features

 		
 Component categories

 		
 Searching Component

 		
 Grid size and Orientation

 		
 Components Position

 		
 Schematic Description

 		
 Basic Editor Operations

 		
 Gallery

 		
 Saving and Re-Opening

 		
 Dashboard

 		
 Export

 		
 Open Schematic

 		
 ERC Check

 		
 Generate Netlist

 		
 Simulate

 		
 Sharing

 		
 Spice simulator

 		
 eSim Gallery Examples

 		
 Voltage Divider

 		
 RC Circuit

 		
 Dual RC Ladder

 		
 Bipolar Amplifier

 		
 Shunt Clipper

 		
 RC Circuit Parallel

 		
 Screenshots

 		
 Introduction to Arduino on Cloud

 		
 Arduino Development Flow

 		
 Drawing Components and Rendering in Browser

 		
 Capturing Arduino Project Schematic

 		
 Simulation

 		
 Features

 		
 Component categories

 		
 Workspace

 		
 Component Info / Properties

 		
 ERC Check

 		
 View/Download Component List

 		
 Export

 		
 Code editor

 		
 Simulator

 		
 Saving and Re-opening

 		
 Dashboard

 		
 Gallery

 		
 Screenshots

 		
 Developer docs

 		
 APIs

 		
 DB Switching Instructions

 		
 Contributing

 		
 Contributing

 		
 Types of contributions

 		
 Reporting Bug / Suggesting Features

 		
 Step 1: Assign/Create Issues

 		
 Step 2: Fork Repository

 		
 Step 3: Contribute

 		
 Step 4: Make a pull request

 		
 Contributing Guidelines

 		
 Creating a new issue

 		
 Title

 		
 Description

 		
 Pull request

 		
 Guidelines

 		
 Credits

 		
 eSim on the Cloud

 		
 Arduino on the Cloud

 		
 Arduino Frontend Guide

 		
 Serve on a Local Machine

 		
 Without Docker

 		
 With Docker

 		
 Configuring Production Environment

 		
 Configuring Development Environment

 		
 Creating an Component for Simulator

_images/Bipolar_Amplifier.png
@ eSim sipolar Ampiifier

DR R &8 8 (0] 8 ERCIRe a a @ i o=
Components List
aQ h

Searcny

NAME -
Transistor_BJT v
esim_Hybrid v
Device v
Transistor_FET v
Triac_Thyristor v
pspice v
eSim._Sources v
Transistor_1G8T v
Analog v

Motor v

oo

Properties
Grid Properties

a4~ || Landscape ¥

Gigsze Gralayout

Components Position

Schematic Description

& basic BIT amplifier has a
very high gain that may vary
uidely from one transistor
o the next. A NPN bipolar
(transistor is the used as
janplifying device. 4

_static/plus.png

_images/Bipolar_Amplifier_Simulation1.png
Simulation Result for * Bipolar Amplifier *

GRAPH OUTPUT

_static/file.png

_static/minus.png

